Creation and annihilation operators, symmetry and supersymmetry of the 3D isotropic harmonic oscillator

This article has been downloaded from IOPscience. Please scroll down to see the full text article. 2003 J. Phys. A: Math. Gen. 364849
(http://iopscience.iop.org/0305-4470/36/17/311)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.96
The article was downloaded on 02/06/2010 at 11:38

Please note that terms and conditions apply.

Creation and annihilation operators, symmetry and supersymmetry of the 3D isotropic harmonic oscillator

R D Mota ${ }^{1,4}$, V D Granados ${ }^{2}$, A Queijeiro ${ }^{2}$, J García 2 and L Guzmán ${ }^{3}$
${ }^{1}$ Departamento de Matemáticas, Centro de Investigación y de Estudios Avenzados del IPN, 07000, México DF, Mexico
${ }^{2}$ Escuela Superior de Física y Matemáticas, Instituto Politécnico Nacional, Ed. 9, Unidad Profesional Adolfo López Mateos, 07738 México DF, Mexico
${ }^{3}$ Unidad Profesional Interdisciplinaria en Ingeniería y Tecnologías Avanzadas, IPN Av. Instituto Politécnico Nacional No 2580, Col. La Laguna Ticomán, Delegación Gustavo A Madero, CP 07340 México DF, Mexico
E-mail: mota@gina.esfm.ipn.mx and ravelo@esfm.ipn.mx (J Garcia)

Received 25 November 2002, in final form 18 February 2003
Published 16 April 2003
Online at stacks.iop.org/JPhysA/36/4849

Abstract

We show that the supersymmetric radial ladder operators of the threedimensional isotropic harmonic oscillator are contained in the spherical components of the creation and annihilation operators of the system. Also, we show that the constants of motion of the problem, written in terms of these spherical components, lead us to second-order radial operators. Further, we show that these operators change the orbital angular momentum quantum number by two units and are equal to those obtained by the Infeld-Hull factorization method.

PACS numbers: 03.65.-w, 02.30.Tb, 11.30.Pb

1. Introduction

It is well known that the harmonic oscillator and the hydrogen atom have played an important role in classical and quantum mechanics. Moreover, these problems can be studied following different approaches. Among them are the factorization methods, those of Schrödinger [1] and Infeld-Hull (IH) [2] being the oldest and more common. Supersymmetric quantum mechanics is the most recent way to study solvable as well as perturbative problems, as is extensively shown in [3, 4]. For some quantum problems the relation between constants of motion, ladder operators and supersymmetry has been studied by several authors [5-14]. For example, the SUSY operators for the two- and three-dimensional hydrogen atom are equal to those of the IH factorization method and are contained in their conservative quantities [7, 11, 13]. The simplicity of the two-dimensional hydrogen atom inductively allows us

[^0]to deduce the well-known Laplace-Runge-Lenz vector (LRLV) from the supersymmetric approach $[11,13]$. But because of the complexity of the three-dimensional case, this procedure is no longer appropriate. However, the inverse procedure can be applied, i.e. by going from LRLV to the radial SUSY operators, as has been shown in [7, 11]. In this work, we show for the three-dimensional isotropic harmonic oscillator (3-DIHO) that the SUSY operators coincide with the radial parts of the spherical creation and annihilation operators, and that they are different to those of the IH factorization method. We show that the constants of motion of the problem, written in terms of these spherical components, contain second-order radial operators. Also, we show that these operators change the orbital angular momentum quantum number by two units in the wavefunction and are equal to those obtained by the IH factorization method. The sequence of this work is as follows. In section 2, from the spherical creation and annihilation operators of the 3-DIHO we obtain radial ladder operators that change both quantum numbers, the principal quantum number and orbital angular momentum quantum number. In section 3, we obtain the supersymmetric radial operators and show that they are equal to those we obtained in section 2. In section 4, we show that the constants of motion of the 3-DIHO, identified with $S U(3)$-symmetrized operators, contain the radial operators of the IH factorization method of the 3-DIHO. In section 5, we give concluding remarks.

2. The radial spherical creation and annihilation operators of the 3-DIHO

In what follows we will use $\hbar=\omega=\mu \equiv 1$, where μ is the mass of the particle and ω is the angular frequency of the harmonic oscillator. From the vector creation and annihilation operators,

$$
\begin{equation*}
\mathbf{a}=(\mathbf{r}+\mathrm{i} \mathbf{p}) / 2 \quad \mathbf{a}^{\dagger}=(\mathbf{r}-\mathrm{i} \mathbf{p}) / 2 \tag{1}
\end{equation*}
$$

we can write the Hamiltonian operator of the 3-DIHO as

$$
\begin{equation*}
H=\mathbf{a}^{\dagger} \cdot \mathbf{a}+3 / 2=\left(\mathbf{p}^{2}+\mathbf{r}^{2}\right) / 2 \tag{2}
\end{equation*}
$$

where \mathbf{r} and \mathbf{p} are the position and the momentum vectors of the particle, respectively, and \dagger denotes Hermitian conjugate. Creation and annihilation operators and the Hamiltonian satisfy the following commutation relations [15]:

$$
\begin{equation*}
\left[a_{i}, a_{j}\right]=\delta_{i j} \quad\left[H, a_{j}^{\dagger}\right]=a_{j}^{\dagger} \quad\left[H, a_{j}\right]=-a_{j} . \tag{3}
\end{equation*}
$$

The spherical components of $\mathbf{a}, a_{ \pm 1} \equiv \frac{1}{2}\left(a_{1} \pm \mathrm{i} a_{2}\right)$ and $a_{0} \equiv a_{3}$, as well as those of \mathbf{a}^{\dagger} can be written as

$$
\begin{align*}
& a_{ \pm 1}=\frac{1}{\sqrt{2}}\left[r \sin \theta \mathrm{e}^{ \pm \mathrm{i} \phi}+\left(\frac{\partial}{\partial x} \pm \mathrm{i} \frac{\partial}{\partial y}\right)\right] \\
& a_{ \pm 1}^{\dagger}=\frac{1}{\sqrt{2}}\left[r \sin \theta \mathrm{e}^{ \pm \mathrm{i} \phi}-\left(\frac{\partial}{\partial x} \pm \mathrm{i} \frac{\partial}{\partial y}\right)\right] \tag{4}\\
& a_{0}=\frac{1}{\sqrt{2}}\left(r \cos \theta+\frac{\partial}{\partial z}\right) .
\end{align*}
$$

We apply the spherical components $a_{ \pm 1}$ and $a_{ \pm 1}^{\dagger}$ to any element of the standard basis, $\Psi_{n l m}(r, \theta, \phi)=Y_{\ell m}(\theta, \phi) R_{n \ell}(r) \equiv Y_{\ell m}(\theta, \phi) f_{n \ell}(r) / r$, and use the recursion relations for the spherical harmonics [16], to obtain

$$
\begin{align*}
a_{ \pm 1} \Psi_{n \ell m}(r, \theta, \phi) & =-\alpha^{ \pm}(\ell, m) Y_{\ell+1, m \pm 1}(\theta, \phi) \frac{1}{r} A_{\ell}^{\dagger} f_{n \ell}(r) \\
- & \beta^{ \pm}(\ell, m) Y_{\ell-1, m \pm 1}(\theta, \phi) \frac{1}{r} B_{\ell}^{\dagger} f_{n \ell}(r) \tag{5}
\end{align*}
$$

$$
\begin{align*}
& a_{ \pm 1}^{\dagger} \Psi_{n \ell m}(r, \theta, \phi)=-\alpha^{ \pm}(\ell, m) Y_{\ell+1, m \pm 1}(\theta, \phi) \frac{1}{r} B_{\ell+1} f_{n \ell}(r) \\
&-\beta^{ \pm}(\ell, m) Y_{\ell-1, m \pm 1}(\theta, \phi) \frac{1}{r} A_{\ell-1} f_{n \ell}(r) \tag{6}
\end{align*}
$$

$a_{0} \Psi_{n \ell m}(r, \theta, \phi)=-\gamma(\ell, m) Y_{\ell+1, m}(\theta, \phi) \frac{1}{r} A_{\ell}^{\dagger} f_{n \ell}(r)-\epsilon(\ell, m) Y_{\ell-1, m}(\theta, \phi) \frac{1}{r} B_{\ell}^{\dagger} f_{n \ell}(r)$
where the coefficients $\alpha^{ \pm}(\ell, m), \beta^{ \pm}(\ell, m), \gamma(n, \ell)$ and $\epsilon(n, \ell)$ are

$$
\begin{aligned}
& \alpha^{ \pm}(\ell, m)= \pm \sqrt{\frac{(\ell \pm m+1)(\ell \pm m+2)}{(2 \ell+1)(2 \ell+3)}} \\
& \beta^{ \pm}(\ell, m)=\mp \sqrt{\frac{(\ell \mp m)(\ell \mp m-1)}{(2 \ell+1)(2 \ell-1)}} \\
& \gamma(\ell, m)=\sqrt{\frac{(\ell+m+1)(\ell-m+1)}{(2 \ell+3)(2 \ell+1)}} \\
& \epsilon(\ell, m)=\sqrt{\frac{(\ell+m)(\ell-m)}{(2 \ell+1)(2 \ell-1)}}
\end{aligned}
$$

and the operators $A_{\ell}, A_{\ell}^{\dagger}, B_{\ell}$ and B_{ℓ}^{\dagger} are defined as follows:

$$
\begin{array}{rlrl}
A_{\ell} & =\frac{1}{\sqrt{2}}\left(\frac{\mathrm{~d}}{\mathrm{~d} r}+\frac{\ell+1}{r}-r\right) & A_{\ell}^{\dagger} & =\frac{1}{\sqrt{2}}\left(-\frac{\mathrm{d}}{\mathrm{~d} r}+\frac{\ell+1}{r}-r\right) \\
B_{\ell} & =\frac{1}{\sqrt{2}}\left(\frac{\mathrm{~d}}{\mathrm{~d} r}-\frac{\ell}{r}-r\right) & B_{\ell}^{\dagger}=\frac{1}{\sqrt{2}}\left(-\frac{\mathrm{d}}{\mathrm{~d} r}-\frac{\ell}{r}-r\right) . \tag{9}
\end{array}
$$

Some remarks about the effect of the radial operators $A_{\ell}, A_{\ell}^{\dagger}, B_{\ell}$ and B_{ℓ}^{\dagger} on the reduced wavefunction $f_{n \ell}$ are the following. First, since the operators $a_{ \pm 1}$ and $a_{ \pm 1}^{\dagger}$ are not constants of motion, the radial operators in equations (8) and (9) must change both quantum numbers, n and ℓ, in $f_{n \ell}$. For example, for equation (5) to be self-consistent, the first subindex of the spherical harmonic $Y_{\ell+1, m \pm 1}$ and the second one of the resulting radial function $A_{\ell}^{\dagger} f_{n \ell}(r)$ must be equal. This implies that the radial operator A_{ℓ}^{\dagger} must change ℓ to $\ell+1$ in $f_{n \ell}$. These observations are in agreement with those obtained from the purely operational context by Liu et al [17], without any reference to creation and annihilation operators. They showed that the radial operators $A_{\ell}, A_{\ell}^{\dagger}, B_{\ell}$ and B_{ℓ}^{\dagger} act on the reduced wavefunction $f_{n \ell}(r)$ as follows:

$$
\begin{array}{ll}
A_{\ell} f_{n \ell}(r) \propto f_{n-1 \ell+1}(r) & A_{\ell}^{\dagger} f_{n \ell}(r) \propto f_{n-1 \ell-1}(r) \tag{10}\\
B_{\ell} f_{n \ell}(r) \propto f_{n+1 \ell+1}(r) & B_{\ell}^{\dagger} f_{n \ell}(r) \propto f_{n+1 \ell-1}(r)
\end{array}
$$

In the next section we will show that the radial operators $A_{\ell}, A_{\ell}^{\dagger}, B_{\ell}$ and B_{ℓ}^{\dagger} turn out to be the same as those of supersymmetry.

3. Supersymmetry of the 3-DIHO

The one-dimensional radial Schrödinger equation for the 3-DIHO is

$$
\begin{equation*}
\left[-\frac{1}{2} \frac{\mathrm{~d}^{2}}{\mathrm{~d} r^{2}}+\frac{\ell(\ell+1)}{2 r^{2}}-\frac{1}{r} \frac{\mathrm{~d}}{\mathrm{~d} r}+\frac{r^{2}}{2}\right] R_{n \ell}(r)=E R_{n \ell}(r) \tag{11}
\end{equation*}
$$

which can be rewritten as

$$
\begin{align*}
H_{\ell} f_{n \ell}(r) & =\left(-\frac{1}{2} \frac{\mathrm{~d}^{2}}{\mathrm{~d} r^{2}}+\frac{\ell(\ell+1)}{2 r^{2}}+\frac{r^{2}}{2}\right) f_{n \ell}(r) \\
& \equiv\left(-\frac{1}{2} \frac{\mathrm{~d}^{2}}{\mathrm{~d} r^{2}}+V_{\ell}(r)\right) f_{n \ell}(r)=E f_{n \ell}(r) \tag{12}
\end{align*}
$$

Since supersymmetry in nonrelativistic quantum mechanics is well known [3, 4, 18, 19], we apply its results to our problem. The radial harmonic oscillator is a supersymmetric quantum system with good or broken SUSY, depending on the sign choice of the parameter $\eta \equiv \pm(\ell+1 / 2)+1 / 2$ [19]. For a fixed ℓ in equation (12), we can obtain the functions

$$
\begin{equation*}
u_{0_{ \pm}}=r^{\eta} \exp \left(-r^{2} / 2\right) \tag{13}
\end{equation*}
$$

which satisfy

$$
\begin{equation*}
\frac{1}{2} \frac{u_{0_{ \pm}}^{\prime \prime}}{u_{0_{ \pm}}}=V_{\ell}(r)-[\eta+1 / 2] \tag{14}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{u_{0_{ \pm}}^{\prime}}{u_{0_{ \pm}}}=\frac{\eta}{r}-r . \tag{15}
\end{equation*}
$$

For positive values of η, i.e. $\eta=\ell+1$, SUSY is good, and u_{0+} is the corresponding square-integrable ground-state wavefunction of the problem. For the case of $\eta=-\ell<0$, SUSY is broken, since the function u_{0-} cannot be normalized. We note that both functions, $u_{0_{ \pm}}$, lead to the same equations, i.e. equations (14) and (15).

The rate $u_{0_{ \pm}}^{\prime} / u_{0_{ \pm}}$defines completely the supersymmetric operators of the problem [3, 4, 18]. From $u_{0_{+}}$we obtain supersymmetric operators identical to A_{ℓ} and A_{ℓ}^{\dagger}. Formally, from $u_{0_{-}}$, the resulting SUSY operators are equal to B_{ℓ} and B_{ℓ}^{\dagger}. This shows that the radial operators of equations (8) and (9), contained in the spherical components of the creation and annihilation operators $a_{ \pm 1}$ and $a_{ \pm 1}^{\dagger}$, are the supersymmetric operators for the central potential $V_{\ell}(r)-[\eta+1 / 2]$.

By a straightforward calculation we obtain

$$
\begin{array}{ll}
A_{\ell} A_{\ell}^{\dagger}=H_{\ell+1 / 2}-(\ell+3 / 2) & A_{\ell}^{\dagger} A_{\ell}=H_{\ell+3 / 2}-(\ell+1 / 2) \\
B_{\ell} B_{\ell}^{\dagger}=H_{\ell+1 / 2}+(\ell-1 / 2) & B_{\ell}^{\dagger} B_{\ell}=H_{\ell-1 / 2}+(\ell+1 / 2) . \tag{16}
\end{array}
$$

From these equations we observe that the operators $A_{\ell}\left(B_{\ell}\right)$ and $A_{\ell}^{\dagger}\left(B_{\ell}^{\dagger}\right)$ are the supersymmetric operators of the Hamiltonian $A_{\ell} A_{\ell}^{\dagger}\left(B_{\ell} B_{\ell}^{\dagger}\right)$ and its partner $A_{\ell}^{\dagger} A_{\ell}\left(B_{\ell}^{\dagger} B_{\ell}\right)$. This is due to the additional term in the potential of equation (14), which is the reason that the supersymmetric operators do not factorize the Hamiltonian H_{ℓ} of the 3-DIHO, but the Hamiltonian H_{ℓ} plus an additional term.

4. Symmetry and factorization of the 3-DIHO

It is well known that the symmetry group of the 3-DIHO is $S U(3)$, whose generators are composed of the components of the orbital angular momentum and those of a rank two symmetric tensor [15, 20, 21]. The constants of motion of the 3-DIHO, written in terms of the
spherical creation and annihilation operators (4), are identified with the $S U$ (3)-symmetrized operators

$$
\begin{align*}
& L_{0}=a_{-1}^{\dagger} a_{+1}-a_{+1}^{\dagger} a_{-1} \quad L_{ \pm 1}=\mp\left(a_{ \pm 1}^{\dagger} a_{0}-a_{0}^{\dagger} a_{ \pm 1}\right) \\
& Q_{0}=-\frac{1}{\sqrt{3}}\left(2 a_{0}^{\dagger} a_{0}+a_{-1}^{\dagger} a_{1}-a_{1}^{\dagger} a_{-1}\right) \tag{17}\\
& Q_{ \pm 1}=\left(a_{ \pm 1}^{\dagger} a_{0}+a_{0}^{\dagger} a_{ \pm 1}\right) \quad Q_{ \pm 2}=-\sqrt{2} a_{ \pm 1}^{\dagger} a_{ \pm 1}
\end{align*}
$$

Except for some multiplicative constants, the operators Q_{σ}, with $\sigma=0, \pm 1, \pm 2$, are equal to those given in [21]. The components of the rank two tensor can be written as

$$
\begin{align*}
& Q_{0}=3\left(r^{2} \cos ^{2} \theta-\frac{\partial^{2}}{\partial z^{2}}\right)-H \\
& Q_{ \pm 1}= \pm \frac{1}{\sqrt{2}}\left[r^{2} \cos \theta \sin \theta \mathrm{e}^{ \pm i \phi}-\frac{\partial}{\partial z}\left(\frac{\partial}{\partial x} \pm \mathrm{i} \frac{\partial}{\partial y}\right)\right] \tag{18}\\
& Q_{ \pm 2}=-\frac{1}{2}\left[r^{2} \sin ^{2} \theta \mathrm{e}^{ \pm 2 i \phi}+\left(\frac{\partial}{\partial x} \pm \mathrm{i} \frac{\partial}{\partial y}\right)\left(\frac{\partial}{\partial x} \pm \mathrm{i} \frac{\partial}{\partial y}\right)\right]
\end{align*}
$$

where H is the Hamiltonian given in equation (2).
A similar procedure to that followed in deriving equations (5)-(7) leads us to

$$
\begin{align*}
&-\frac{1}{3} Q_{0} \Psi_{n \ell m}(r,\theta, \phi) \\
&= \Pi(\ell, m) Y_{\ell+2, m}(\theta, \phi)\left(-\frac{2 \ell+3}{r}\right)\left(\frac{1}{r} \frac{\mathrm{~d}}{\mathrm{~d} r}-\frac{\ell+1}{r^{2}}+\frac{2 E}{2 \ell+3}\right) f_{n \ell}(r) \\
&+\frac{1}{r}\left(\frac{1}{3}-2 \Upsilon(\ell, m)\right) E Y_{\ell, m}(\theta, \phi) f_{n \ell}(r) \\
&+\Xi(\ell, m) Y_{\ell-2, m}(\theta, \phi)\left(\frac{2 \ell-1}{r}\right)\left(\frac{1}{r} \frac{\mathrm{~d}}{\mathrm{~d} r}+\frac{\ell}{r^{2}}-\frac{2 E}{2 \ell-1}\right) f_{n \ell}(r) \tag{19}\\
& \pm \sqrt{2} Q_{ \pm 1} \Psi_{n \ell m}(r, \theta, \phi) \\
&= \Omega^{ \pm}(\ell, m) Y_{\ell+2, m \pm 1}(\theta, \phi)\left(-\frac{2 \ell+3}{r}\right)\left(\frac{1}{r} \frac{\mathrm{~d}}{\mathrm{~d} r}-\frac{\ell+1}{r^{2}}+\frac{2 E}{2 \ell+3}\right) f_{n \ell}(r) \\
&-\frac{2}{r} E \Phi^{ \pm}(\ell, m) Y_{\ell, m \pm 1}(\theta, \phi) f_{n \ell}(r) \\
&+\Sigma^{ \pm}(\ell, m) Y_{\ell-2, m \pm 1}(\theta, \phi)\left(\frac{2 \ell-1}{r}\right)\left(\frac{1}{r} \frac{\mathrm{~d}}{\mathrm{~d} r}+\frac{\ell}{r^{2}}-\frac{2 E}{2 \ell-1}\right) f_{n \ell}(r) \tag{20}
\end{align*}
$$

$2 Q_{ \pm 2} \Psi_{n \ell m}(r, \theta, \phi)$

$$
\begin{align*}
= & \Delta^{ \pm}(\ell, m) Y_{\ell+2, m \pm 2}(\theta, \phi)\left(-\frac{2 \ell+3}{r}\right)\left(\frac{1}{r} \frac{\mathrm{~d}}{\mathrm{~d} r}-\frac{\ell+1}{r^{2}}+\frac{2 E}{2 \ell+3}\right) f_{n \ell}(r) \\
& -\frac{2}{r} E \Lambda^{ \pm}(\ell, m) Y_{\ell, m \pm 2}(\theta, \phi) f_{n \ell}(r) \\
& +\Gamma^{ \pm}(\ell, m) Y_{\ell-2, m \pm 2}(\theta, \phi)\left(\frac{2 \ell-1}{r}\right)\left(\frac{1}{r} \frac{\mathrm{~d}}{\mathrm{~d} r}+\frac{\ell}{r^{2}}-\frac{2 E}{2 \ell-1}\right) f_{n \ell}(r) \tag{21}
\end{align*}
$$

where the coefficients $\Pi(\ell, m), \Upsilon(\ell, m), \Xi(\ell, m), \Omega^{ \pm}(\ell, m), \Phi^{ \pm}(\ell, m), \Sigma^{ \pm}(\ell, m), \Delta^{ \pm}(\ell, m)$, $\Lambda^{ \pm}(\ell, m)$ and $\Gamma^{ \pm}(\ell, m)$ are

$$
\begin{aligned}
& \Pi(\ell, m)=\sqrt{\frac{(\ell+m+1)(\ell-m+1)(\ell+m+2)(\ell-m+2)}{(2 \ell+5)(2 \ell+3)^{2}(2 \ell+1)}} \\
& \Upsilon(\ell, m)=\frac{2 \ell^{2}+2 \ell-2 m^{2}-1}{(2 \ell+3)(2 \ell-1)} \\
& \Xi(\ell, m)=\sqrt{\frac{(\ell+m)(\ell-m)(\ell+m-1)(\ell-m-1)}{(2 \ell+1)(2 \ell-1)^{2}(2 \ell-3)}} \\
& \Omega^{ \pm}(\ell, m)= \pm \sqrt{\frac{(\ell \pm m+3)(\ell \pm m+2)(\ell \pm m+1)(\ell \mp m+1)}{(2 \ell+5)(2 \ell+3)^{2}(2 \ell+1)}} \\
& \Phi^{ \pm}(\ell, m)= \pm \frac{2 m \pm 1}{(2 \ell+3)(2 \ell-1)} \sqrt{(\ell \mp m)(\ell \pm m+1)} \\
& \Sigma^{ \pm}(\ell, m)=\mp \sqrt{\frac{(\ell+m)(\ell-m)(\ell \mp m-1)(\ell \mp m-2)}{(2 \ell+1)(2 \ell-1)^{2}(2 \ell-3)}} \\
& \Delta^{ \pm}(\ell, m)=\sqrt{\frac{(\ell \pm m+4)(\ell \pm m+3)(\ell \pm m+2)(\ell \pm m+1)}{(2 \ell+5)(2 \ell+3)^{2}(2 \ell+1)}} \\
& \Lambda^{ \pm}(\ell, m)=\frac{-2}{(2 \ell+3)(2 \ell-1)} \sqrt{(\ell \pm m+2)(\ell \pm m+1)(\ell \mp m)(\ell \mp m-1)} \\
& \Gamma^{ \pm}(\ell, m)=\sqrt{\frac{(\ell \mp m)(\ell \mp m-1)(\ell \mp m-2)(\ell \mp m-3)}{(2 \ell+1)(2 \ell-1)^{2}(2 \ell-3)}}
\end{aligned}
$$

We note that the operators of equations (18) contain second-order derivatives. So, the radial operators in equations (19)-(21) were obtained by using the radial Schrödinger equation (12) to transform second-order radial derivatives into first-order ones. This is the reason why the energy E is now involved in these expressions. This procedure has been used in a previous work by studying the two-dimensional harmonic oscillator [8].

Since the operators $Q_{0}, Q_{ \pm 1}$ and $Q_{ \pm 2}$ are tensor operators [15], they must transform the state $\Psi_{n \ell m}(r, \theta, \phi)$ into a linear combination of states belonging to the same energy level. Because of this, the radial operators in equations (19)-(21) must transform $f_{n \ell}(r)$ into $f_{n \ell \pm 2}(r)$, or into a factor times $f_{n \ell}(r)$, depending on whether the ℓ-subindex value of the companion spherical harmonic is $\ell \pm 2$ or ℓ, respectively. So, the operators that increase or decrease the angular momentum by 2 , but keep the energy E unchanged, are

$$
\begin{equation*}
\left(\frac{1}{r} \frac{\mathrm{~d}}{\mathrm{~d} r}+\frac{\ell}{r^{2}}-\frac{2 E}{2 \ell-1}\right) f_{n \ell}(r) \propto f_{n, \ell-2} \quad\left(\frac{1}{r} \frac{\mathrm{~d}}{\mathrm{~d} r}-\frac{\ell+1}{r^{2}}+\frac{2 E}{2 \ell+3}\right) f_{n \ell}(r) \propto f_{n, \ell+2} \tag{22}
\end{equation*}
$$

respectively. These radial operators were obtained by Liu et al [17] from a purely operational context by factorizing the radial equation (12) without relating them to the constants of motion. Since we can show that equation (12) cannot be factorized by means of the IH factorization
method [2], the factorization technique used in [17] is different to that of IH. However, we can show that equation (11) and the definitions $G(r)=r^{3 / 2} R(r)$ and $x=r^{2}$, lead us to

$$
\begin{equation*}
\left(\frac{\mathrm{d}^{2}}{\mathrm{~d} x^{2}}-\frac{(\ell / 2+3 / 4)(\ell / 2-1 / 4)}{x^{2}}+\frac{2 E}{x}-\frac{1}{4}\right) G(x)=0 . \tag{23}
\end{equation*}
$$

This equation is classified by the IH factorization method as one of class I type F [2], and its factorization operators can immediately be found. We can show that these IH factorization operators are equal to those of equation (22).

5. Concluding remarks

The constants of motion of the two-dimensional problems of the hydrogen atom and the harmonic oscillator have been obtained from SUSY operators [13, 14]. This is because in the two-dimensional cases, due to the simplicity of the angular dependence of the wavefunction, it is easy to replace the angular momentum quantum number m by a differential operator. However, in our problem, where the angular dependence of the wavefunction is given by the spherical harmonics, the procedure followed in [13,14] is not so easy to apply to obtain the operators $Q_{0}, Q_{ \pm 1}$ and $Q_{ \pm 2}$ from supersymmetric operators.

For the 3-DIHO we have shown that the radial part of the spherical creation and annihilation operators and their adjoints, are equal to its supersymmetric operators. Also, we showed that the constants of motion of the problem lead us to second-order radial operators which are equal to those obtained by the IH factorization method, and change the orbital angular momentum quantum number by two units. Moreover, the subtle relationship between the IH radial operators and the SUSY operators is obtained from the bilinear combinations of equations (17). At this stage, it is interesting to note that the spherical creation and annihilation operators (4) as well as the constants of motion (17) contain the good and broken SUSY operators, given by equations (8) and (9), respectively.

Finally, in this work we have treated a problem that because of its complexity was not explicitly studied in [11], where the relation between closeness of the orbits in classical mechanics and the radial factorization in quantum mechanics was analysed.

Acknowledgments

This work was partially supported by COFAA-IPN, EDI-IPN and SNI-México.

References

[1] Schrödinger E 1940 Proc. R. Ir. Acad. A 469 Schrödinger E 1940 Proc. R. Ir. Acad. A 46183 Schrödinger E 1941 Proc. R. Ir. Acad. A 4753
[2] Infeld L 1941 Phys. Rev. 59737 Infeld L and Hull T E 1951 Rev. Mod. Phys. 2321
[3] Lahiri A, Roy P and Bagchi B 1990 Int. J. Mod. Phys. A 5 1383-456
[4] Cooper F, Khare A and Sukhatme U 1997 Phys. Rep. 251 267-385 Cooper F, Khare A and Sukhatme U 1997 J. Phys. A: Math. Gen. 30 5037-50
[5] Coish H R 1956 Can. J. Phys. 34343
[6] Biedenharn L C and Louck J D 1981 Angular Momentum in Quantum Physics, Encyclopedia of Mathematics and its Applications (Reading, MA: Addison-Wesley) p 353
[7] Mota R D, García J and Granados V D 2001 J. Phys. A: Math. Gen. 34 2041-49
[8] Mota R D, Granados V D, Queijeiro A and García J 2002 J. Phys. A: Math. Gen. 35 2979-84
[9] Granados V D 1991 Rev. Mex. Fís. 37629
[10] Dahl J P and Jorgensen T 1995 Int. J. Quantum Chem. 53161
[11] Liu Y F, Huo W J and Zeng J Y 1998 Phys. Rev. A 58862
[12] Balantekin A B 1985 Ann. Phys., NY 164 277-87
[13] Lyman J M and Aravind P K 1993 J. Phys. A: Math. Gen. 263307
[14] Torres del Castillo G F and Tepper García T 2002 Rev. Mex. Fís. 48 16-8
[15] Wybourne B G 1974 Classical Groups for Physicsts (New York: Wiley)
[16] Bethe H and Salpeter E 1957 Quantum Mechanics of One- and Two-Electron Atoms (Berlin: Springer)
[17] Liu Y F, Lei Y A and Zeng J Y 1997 J. Phys. Lett. A 231 9-22
[18] Schwabl F 1992 Quantum Mechanics (Berlin: Springer) ch 19
[19] Junker G 1996 Supersymmetric Methods in Quantum and Statistical Physics (Berlin: Springer) p 33
[20] Jauch J M and Hill E L 1940 Phys. Rev. 57641
[21] Fradkin D M 1965 Am. J. Phys. 33207

[^0]: ${ }^{4}$ On leave of absence from ${ }^{3}$.

