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Abstract
We show that the supersymmetric radial ladder operators of the three-
dimensional isotropic harmonic oscillator are contained in the spherical
components of the creation and annihilation operators of the system. Also,
we show that the constants of motion of the problem, written in terms of
these spherical components, lead us to second-order radial operators. Further,
we show that these operators change the orbital angular momentum quantum
number by two units and are equal to those obtained by the Infeld–Hull
factorization method.

PACS numbers: 03.65.−w, 02.30.Tb, 11.30.Pb

1. Introduction

It is well known that the harmonic oscillator and the hydrogen atom have played an important
role in classical and quantum mechanics. Moreover, these problems can be studied following
different approaches. Among them are the factorization methods, those of Schrödinger [1]
and Infeld–Hull (IH) [2] being the oldest and more common. Supersymmetric quantum
mechanics is the most recent way to study solvable as well as perturbative problems, as is
extensively shown in [3, 4]. For some quantum problems the relation between constants of
motion, ladder operators and supersymmetry has been studied by several authors [5–14]. For
example, the SUSY operators for the two- and three-dimensional hydrogen atom are equal
to those of the IH factorization method and are contained in their conservative quantities
[7, 11, 13]. The simplicity of the two-dimensional hydrogen atom inductively allows us
4 On leave of absence from3.
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to deduce the well-known Laplace–Runge–Lenz vector (LRLV) from the supersymmetric
approach [11, 13]. But because of the complexity of the three-dimensional case, this procedure
is no longer appropriate. However, the inverse procedure can be applied, i.e. by going from
LRLV to the radial SUSY operators, as has been shown in [7, 11]. In this work, we show
for the three-dimensional isotropic harmonic oscillator (3-DIHO) that the SUSY operators
coincide with the radial parts of the spherical creation and annihilation operators, and that
they are different to those of the IH factorization method. We show that the constants of
motion of the problem, written in terms of these spherical components, contain second-order
radial operators. Also, we show that these operators change the orbital angular momentum
quantum number by two units in the wavefunction and are equal to those obtained by the IH
factorization method. The sequence of this work is as follows. In section 2, from the spherical
creation and annihilation operators of the 3-DIHO we obtain radial ladder operators that
change both quantum numbers, the principal quantum number and orbital angular momentum
quantum number. In section 3, we obtain the supersymmetric radial operators and show that
they are equal to those we obtained in section 2. In section 4, we show that the constants
of motion of the 3-DIHO, identified with SU(3)-symmetrized operators, contain the radial
operators of the IH factorization method of the 3-DIHO. In section 5, we give concluding
remarks.

2. The radial spherical creation and annihilation operators of the 3-DIHO

In what follows we will use h̄ = ω = µ ≡ 1, where µ is the mass of the particle and ω is
the angular frequency of the harmonic oscillator. From the vector creation and annihilation
operators,

a = (r + ip)/2 a† = (r − ip)/2 (1)

we can write the Hamiltonian operator of the 3-DIHO as

H = a† · a + 3/2 = (p2 + r2)/2 (2)

where r and p are the position and the momentum vectors of the particle, respectively, and †
denotes Hermitian conjugate. Creation and annihilation operators and the Hamiltonian satisfy
the following commutation relations [15]:

[ai, aj ] = δij

[
H, a

†
j

] = a
†
j [H, aj ] = −aj . (3)

The spherical components of a, a±1 ≡ 1
2 (a1 ± ia2) and a0 ≡ a3, as well as those of a† can be

written as

a±1 = 1√
2

[
r sin θ e±iφ +

(
∂

∂x
± i

∂

∂y

)]

a
†
±1 = 1√

2

[
r sin θ e±iφ −

(
∂

∂x
± i

∂

∂y

)]
(4)

a0 = 1√
2

(
r cos θ +

∂

∂z

)
.

We apply the spherical components a±1 and a
†
±1 to any element of the standard

basis,�nlm(r, θ, φ) = Y�m(θ, φ)Rn�(r) ≡ Y�m(θ, φ)fn�(r)/r , and use the recursion relations
for the spherical harmonics [16], to obtain

a±1�n�m(r, θ, φ) = −α±(�,m)Y�+1,m±1(θ, φ)
1

r
A

†
�fn�(r)

− β±(�,m)Y�−1,m±1(θ, φ)
1

r
B

†
�fn�(r) (5)
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a
†
±1�n�m(r, θ, φ) = −α±(�,m)Y�+1,m±1(θ, φ)

1

r
B�+1fn�(r)

− β±(�,m)Y�−1,m±1(θ, φ)
1

r
A�−1fn�(r) (6)

a0�n�m(r, θ, φ) = −γ (�,m)Y�+1,m(θ, φ)
1

r
A

†
�fn�(r) − ε(�,m)Y�−1,m(θ, φ)

1

r
B

†
�fn�(r) (7)

where the coefficients α±(�,m), β±(�,m), γ (n, �) and ε(n, �) are

α±(�,m) = ±
√

(� ± m + 1)(� ± m + 2)

(2� + 1)(2� + 3)

β±(�,m) = ∓
√

(� ∓ m)(� ∓ m − 1)

(2� + 1)(2� − 1)

γ (�,m) =
√

(� + m + 1)(� − m + 1)

(2� + 3)(2� + 1)

ε(�,m) =
√

(� + m)(� − m)

(2� + 1)(2� − 1)

and the operators A�,A
†
�, B� and B

†
� are defined as follows:

A� = 1√
2

(
d

dr
+

� + 1

r
− r

)
A

†
� = 1√

2

(
− d

dr
+

� + 1

r
− r

)
(8)

B� = 1√
2

(
d

dr
− �

r
− r

)
B

†
� = 1√

2

(
− d

dr
− �

r
− r

)
. (9)

Some remarks about the effect of the radial operators A�, A
†
�, B� and B

†
� on the reduced

wavefunction fn� are the following. First, since the operators a±1 and a
†
±1 are not constants

of motion, the radial operators in equations (8) and (9) must change both quantum numbers,
n and �, in fn�. For example, for equation (5) to be self-consistent, the first subindex of
the spherical harmonic Y�+1,m±1 and the second one of the resulting radial function A

†
�fn�(r)

must be equal. This implies that the radial operator A
†
� must change � to � + 1 in fn�. These

observations are in agreement with those obtained from the purely operational context by Liu
et al [17], without any reference to creation and annihilation operators. They showed that the
radial operators A�,A

†
�, B� and B

†
� act on the reduced wavefunction fn�(r) as follows:

A�fn�(r) ∝ fn−1�+1(r) A
†
�fn�(r) ∝ fn−1�−1(r)

B�fn�(r) ∝ fn+1�+1(r) B
†
�fn�(r) ∝ fn+1�−1(r).

(10)

In the next section we will show that the radial operators A�,A
†
�, B� and B

†
� turn out to be

the same as those of supersymmetry.

3. Supersymmetry of the 3-DIHO

The one-dimensional radial Schrödinger equation for the 3-DIHO is[
−1

2

d2

dr2
+

�(� + 1)

2r2
− 1

r

d

dr
+

r2

2

]
Rn�(r) = ERn�(r) (11)
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which can be rewritten as

H�fn�(r) =
(

−1

2

d2

dr2
+

�(� + 1)

2r2
+

r2

2

)
fn�(r)

≡
(

−1

2

d2

dr2
+ V�(r)

)
fn�(r) = Efn�(r). (12)

Since supersymmetry in nonrelativistic quantum mechanics is well known [3, 4, 18, 19],
we apply its results to our problem. The radial harmonic oscillator is a supersymmetric
quantum system with good or broken SUSY, depending on the sign choice of the parameter
η ≡ ±(� + 1/2) + 1/2 [19]. For a fixed � in equation (12), we can obtain the functions

u0± = rη exp (−r2/2) (13)

which satisfy

1

2

u′′
0±

u0±
= V�(r) − [η + 1/2] (14)

and

u′
0±

u0±
= η

r
− r. (15)

For positive values of η, i.e. η = � + 1, SUSY is good, and u0+ is the corresponding
square-integrable ground-state wavefunction of the problem. For the case of η = −� < 0,
SUSY is broken, since the function u0− cannot be normalized. We note that both functions,
u0± , lead to the same equations, i.e. equations (14) and (15).

The rate u′
0±/u0± defines completely the supersymmetric operators of the problem

[3, 4, 18]. From u0+ we obtain supersymmetric operators identical to A� and A
†
�. Formally,

from u0− , the resulting SUSY operators are equal to B� and B
†
� . This shows that the radial

operators of equations (8) and (9), contained in the spherical components of the creation and
annihilation operators a±1 and a

†
±1, are the supersymmetric operators for the central potential

V�(r) − [η + 1/2].
By a straightforward calculation we obtain

A�A
†
� = H�+1/2 − (� + 3/2) A

†
�A� = H�+3/2 − (� + 1/2)

B�B
†
� = H�+1/2 + (� − 1/2) B

†
�B� = H�−1/2 + (� + 1/2).

(16)

From these equations we observe that the operators A� (B�) and A
†
�

(
B

†
�

)
are the

supersymmetric operators of the Hamiltonian A�A
†
�

(
B�B

†
�

)
and its partner A

†
�A�

(
B

†
�B�

)
.

This is due to the additional term in the potential of equation (14), which is the reason that
the supersymmetric operators do not factorize the Hamiltonian H� of the 3-DIHO, but the
Hamiltonian H� plus an additional term.

4. Symmetry and factorization of the 3-DIHO

It is well known that the symmetry group of the 3-DIHO is SU(3), whose generators are
composed of the components of the orbital angular momentum and those of a rank two
symmetric tensor [15, 20, 21]. The constants of motion of the 3-DIHO, written in terms of the



Creation and annihilation operators, symmetry and supersymmetry of the 3D isotropic harmonic oscillator 4853

spherical creation and annihilation operators (4), are identified with the SU(3)-symmetrized
operators

L0 = a
†
−1a+1 − a

†
+1a−1 L±1 = ∓(

a
†
±1a0 − a

†
0a±1

)
Q0 = − 1√

3

(
2a

†
0a0 + a

†
−1a1 − a

†
1a−1

)
(17)

Q±1 = (
a
†
±1a0 + a

†
0a±1

)
Q±2 = −

√
2a

†
±1a±1.

Except for some multiplicative constants, the operators Qσ , with σ = 0,±1,±2, are equal to
those given in [21]. The components of the rank two tensor can be written as

Q0 = 3

(
r2 cos2 θ − ∂2

∂z2

)
− H

Q±1 = ± 1√
2

[
r2 cos θ sin θ e±iφ − ∂

∂z

(
∂

∂x
± i

∂

∂y

)]
(18)

Q±2 = −1

2

[
r2 sin2 θ e±2iφ +

(
∂

∂x
± i

∂

∂y

) (
∂

∂x
± i

∂

∂y

)]

where H is the Hamiltonian given in equation (2).
A similar procedure to that followed in deriving equations (5)–(7) leads us to

−1

3
Q0�n�m(r, θ, φ)

= �(�,m)Y�+2,m(θ, φ)

(
−2� + 3

r

) (
1

r

d

dr
− � + 1

r2
+

2E

2� + 3

)
fn�(r)

+
1

r

(
1

3
− 2ϒ(�,m)

)
EY�,m(θ, φ)fn�(r)

+ �(�,m)Y�−2,m(θ, φ)

(
2� − 1

r

) (
1

r

d

dr
+

�

r2
− 2E

2� − 1

)
fn�(r) (19)

±
√

2Q±1�n�m(r, θ, φ)

= �±(�,m)Y�+2,m±1(θ, φ)

(
−2� + 3

r

) (
1

r

d

dr
− � + 1

r2
+

2E

2� + 3

)
fn�(r)

− 2

r
E�±(�,m)Y�,m±1(θ, φ)fn�(r)

+ �±(�,m)Y�−2,m±1(θ, φ)

(
2� − 1

r

)(
1

r

d

dr
+

�

r2
− 2E

2� − 1

)
fn�(r) (20)

2Q±2�n�m(r, θ, φ)

= �±(�,m)Y�+2,m±2(θ, φ)

(
−2� + 3

r

) (
1

r

d

dr
− � + 1

r2
+

2E

2� + 3

)
fn�(r)

− 2

r
E�±(�,m)Y�,m±2(θ, φ)fn�(r)

+ �±(�,m)Y�−2,m±2(θ, φ)

(
2� − 1

r

) (
1

r

d

dr
+

�

r2
− 2E

2� − 1

)
fn�(r) (21)
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where the coefficients�(�,m),ϒ(�,m), �(�,m),�±(�,m),�±(�,m),�±(�,m),�±(�,m),
�±(�,m) and �±(�,m) are

�(�,m) =
√

(� + m + 1)(� − m + 1)(� + m + 2)(� − m + 2)

(2� + 5)(2� + 3)2(2� + 1)

ϒ(�,m) = 2�2 + 2� − 2m2 − 1

(2� + 3)(2� − 1)

�(�,m) =
√

(� + m)(� − m)(� + m − 1)(� − m − 1)

(2� + 1)(2� − 1)2(2� − 3)

�±(�,m) = ±
√

(� ± m + 3)(� ± m + 2)(� ± m + 1)(� ∓ m + 1)

(2� + 5)(2� + 3)2(2� + 1)

�±(�,m) = ± 2m ± 1

(2� + 3)(2� − 1)

√
(� ∓ m)(� ± m + 1)

�±(�,m) = ∓
√

(� + m)(� − m)(� ∓ m − 1)(� ∓ m − 2)

(2� + 1)(2� − 1)2(2� − 3)

�±(�,m) =
√

(� ± m + 4)(� ± m + 3)(� ± m + 2)(� ± m + 1)

(2� + 5)(2� + 3)2(2� + 1)

�±(�,m) = −2

(2� + 3)(2� − 1)

√
(� ± m + 2)(� ± m + 1)(� ∓ m)(� ∓ m − 1)

�±(�,m) =
√

(� ∓ m)(� ∓ m − 1)(� ∓ m − 2)(� ∓ m − 3)

(2� + 1)(2� − 1)2(2� − 3)
.

We note that the operators of equations (18) contain second-order derivatives. So,
the radial operators in equations (19)–(21) were obtained by using the radial Schrödinger
equation (12) to transform second-order radial derivatives into first-order ones. This is the
reason why the energy E is now involved in these expressions. This procedure has been used
in a previous work by studying the two-dimensional harmonic oscillator [8].

Since the operators Q0,Q±1 and Q±2 are tensor operators [15], they must transform
the state �n�m(r, θ, φ) into a linear combination of states belonging to the same energy
level. Because of this, the radial operators in equations (19)–(21) must transform fn�(r) into
fn�±2(r), or into a factor times fn�(r), depending on whether the �-subindex value of the
companion spherical harmonic is � ± 2 or �, respectively. So, the operators that increase or
decrease the angular momentum by 2, but keep the energy E unchanged, are(

1

r

d

dr
+

�

r2
− 2E

2� − 1

)
fn�(r) ∝ fn,�−2

(
1

r

d

dr
− � + 1

r2
+

2E

2� + 3

)
fn�(r) ∝ fn,�+2

(22)

respectively. These radial operators were obtained by Liu et al [17] from a purely operational
context by factorizing the radial equation (12) without relating them to the constants of motion.
Since we can show that equation (12) cannot be factorized by means of the IH factorization
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method [2], the factorization technique used in [17] is different to that of IH. However, we can
show that equation (11) and the definitions G(r) = r3/2R(r) and x = r2, lead us to(

d2

dx2
− (�/2 + 3/4)(�/2 − 1/4)

x2
+

2E

x
− 1

4

)
G(x) = 0. (23)

This equation is classified by the IH factorization method as one of class I type F [2], and its
factorization operators can immediately be found. We can show that these IH factorization
operators are equal to those of equation (22).

5. Concluding remarks

The constants of motion of the two-dimensional problems of the hydrogen atom and the
harmonic oscillator have been obtained from SUSY operators [13, 14]. This is because in the
two-dimensional cases, due to the simplicity of the angular dependence of the wavefunction,
it is easy to replace the angular momentum quantum number m by a differential operator.
However, in our problem, where the angular dependence of the wavefunction is given by the
spherical harmonics, the procedure followed in [13, 14] is not so easy to apply to obtain the
operators Q0,Q±1 and Q±2 from supersymmetric operators.

For the 3-DIHO we have shown that the radial part of the spherical creation and
annihilation operators and their adjoints, are equal to its supersymmetric operators. Also, we
showed that the constants of motion of the problem lead us to second-order radial operators
which are equal to those obtained by the IH factorization method, and change the orbital
angular momentum quantum number by two units. Moreover, the subtle relationship between
the IH radial operators and the SUSY operators is obtained from the bilinear combinations
of equations (17). At this stage, it is interesting to note that the spherical creation and
annihilation operators (4) as well as the constants of motion (17) contain the good and broken
SUSY operators, given by equations (8) and (9), respectively.

Finally, in this work we have treated a problem that because of its complexity was not
explicitly studied in [11], where the relation between closeness of the orbits in classical
mechanics and the radial factorization in quantum mechanics was analysed.
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References

[1] Schrödinger E 1940 Proc. R. Ir. Acad. A 46 9
Schrödinger E 1940 Proc. R. Ir. Acad. A 46 183
Schrödinger E 1941 Proc. R. Ir. Acad. A 47 53

[2] Infeld L 1941 Phys. Rev. 59 737
Infeld L and Hull T E 1951 Rev. Mod. Phys. 23 21

[3] Lahiri A, Roy P and Bagchi B 1990 Int. J. Mod. Phys. A 5 1383–456
[4] Cooper F, Khare A and Sukhatme U 1997 Phys. Rep. 251 267–385

Cooper F, Khare A and Sukhatme U 1997 J. Phys. A: Math. Gen. 30 5037–50
[5] Coish H R 1956 Can. J. Phys. 34 343
[6] Biedenharn L C and Louck J D 1981 Angular Momentum in Quantum Physics, Encyclopedia of Mathematics

and its Applications (Reading, MA: Addison-Wesley) p 353
[7] Mota R D, Garcı́a J and Granados V D 2001 J. Phys. A: Math. Gen. 34 2041–49
[8] Mota R D, Granados V D, Queijeiro A and Garcı́a J 2002 J. Phys. A: Math. Gen. 35 2979–84
[9] Granados V D 1991 Rev. Mex. Fı́s. 37 629



4856 R D Mota et al

[10] Dahl J P and Jorgensen T 1995 Int. J. Quantum Chem. 53 161
[11] Liu Y F, Huo W J and Zeng J Y 1998 Phys. Rev. A 58 862
[12] Balantekin A B 1985 Ann. Phys., NY 164 277–87
[13] Lyman J M and Aravind P K 1993 J. Phys. A: Math. Gen. 26 3307
[14] Torres del Castillo G F and Tepper Garcı́a T 2002 Rev. Mex. Fı́s. 48 16–8
[15] Wybourne B G 1974 Classical Groups for Physicsts (New York: Wiley)
[16] Bethe H and Salpeter E 1957 Quantum Mechanics of One- and Two-Electron Atoms (Berlin: Springer)
[17] Liu Y F, Lei Y A and Zeng J Y 1997 J. Phys. Lett. A 231 9–22
[18] Schwabl F 1992 Quantum Mechanics (Berlin: Springer) ch 19
[19] Junker G 1996 Supersymmetric Methods in Quantum and Statistical Physics (Berlin: Springer) p 33
[20] Jauch J M and Hill E L 1940 Phys. Rev. 57 641
[21] Fradkin D M 1965 Am. J. Phys. 33 207


